A new hydrogen-bonding potential for the design of protein-RNA interactions predicts specific contacts and discriminates decoys.

نویسندگان

  • Yu Chen
  • Tanja Kortemme
  • Tim Robertson
  • David Baker
  • Gabriele Varani
چکیده

RNA-binding proteins play many essential roles in the regulation of gene expression in the cell. Despite the significant increase in the number of structures for RNA-protein complexes in the last few years, the molecular basis of specificity remains unclear even for the best-studied protein families. We have developed a distance and orientation-dependent hydrogen-bonding potential based on the statistical analysis of hydrogen-bonding geometries that are observed in high-resolution crystal structures of protein-DNA and protein-RNA complexes. We observe very strong geometrical preferences that reflect significant energetic constraints on the relative placement of hydrogen-bonding atom pairs at protein-nucleic acid interfaces. A scoring function based on the hydrogen-bonding potential discriminates native protein-RNA structures from incorrectly docked decoys with remarkable predictive power. By incorporating the new hydrogen-bonding potential into a physical model of protein-RNA interfaces with full atom representation, we were able to recover native amino acids at protein-RNA interfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein-protein docking predictions for the CAPRI experiment.

We predicted structures for all seven targets in the CAPRI experiment using a new method in development at the time of the challenge. The technique includes a low-resolution rigid body Monte Carlo search followed by high-resolution refinement with side-chain conformational changes and rigid body minimization. Decoys (approximately 10(6) per target) were discriminated using a scoring function in...

متن کامل

Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains.

Sequence-specific protein-nucleic acid recognition is determined, in part, by hydrogen bonding interactions between amino acid side-chains and nucleotide bases. To examine the repertoire of possible interactions, we have calculated geometrically plausible arrangements in which amino acids hydrogen bond to unpaired bases, such as those found in RNA bulges and loops, or to the 53 possible RNA bas...

متن کامل

A theoretical study on quadrupole coupling parameters of HRPII Protein modeled as 310-helix & α-helix structures

A fragment of Histidine rich protein II (HRP II 215-236) was investigated by 14N and 17O electric field gradient, EFG, tensor calculations using DFT. This study is intended to explore the differences between 310-helix and α-helix of HRPII both in the gas phase and in solution. To achieve the aims, the 17O and 14N NQR parameters of a fragment of HRPII (215-236) for both structures are calculated...

متن کامل

Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations.

Protein-protein docking algorithms provide a means to elucidate structural details for presently unknown complexes. Here, we present and evaluate a new method to predict protein-protein complexes from the coordinates of the unbound monomer components. The method employs a low-resolution, rigid-body, Monte Carlo search followed by simultaneous optimization of backbone displacement and side-chain...

متن کامل

Structural bioinformatics 3DRobot: automated generation of diverse and well-packed protein structure decoys

Motivation: Computationally generated non-native protein structure conformations (or decoys) are often used for designing protein folding simulation methods and force fields. However, almost all the decoy sets currently used in literature suffer from uneven root mean square deviation (RMSD) distribution with bias to non-protein like hydrogen-bonding and compactness patterns. Meanwhile, most pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 17  شماره 

صفحات  -

تاریخ انتشار 2004